Algo Drills
Summary - Object Declarations in Java
Array Declaration
int[] a = new int[3]; // use [] for array instead of ()
int[] a = new int[] {1, 2, 3};
int[] b = {1, 2, 3}; // Same as above
// Declaring a Rectangular Matrix
String[][] arr = new String[6][7]; // 6 rows and 7 columns
// Iterating through the 2D array and assigning values
for (int i = 0; i < arr.length; i++) { // Loop through rows
for (int j = 0; j < arr[i].length; j++) { // Loop through columns
arr[i][j] = "-" + i + "_" + j; // Do something
}
}
ArrayList Declaration
List<Integer> list = new ArrayList<>();
list.add(10);
list.get(0);
LinkedList Declaration
List<String> list = new LinkedList<>();
list.add("Hello");
list.add("World");
list.getFirst();
list.getLast();
list.removeFirst();
list.removeLast();
Stack Declaration
Stack<Integer> stack = new Stack<>();
stack.push(10); // Add 10
stack.push(20); // Add 20
System.out.println(stack.peek()); // 20 (top element)
stack.pop(); // Removes 20
System.out.println(stack.isEmpty()); // false
System.out.println(stack.size()); // 1
stack.clear(); // Clear the stack
Queue Declaration
Queue<Integer> queue = new LinkedList<>();
Deque<Integer> deque = new ArrayDeque<>(); // Doubly ended Queue
// Queue Methods
queue.add(10); // Adds element to queue at the rear, throws an exception if the operation fails
queue.offer(20); // Adds element to queue at the rear, returns false if the operation fails
queue.poll(); // Removes element from front
queue.peek(); // Retrieves front element
queue.size(); // Returns size
queue.clear(); // Clears queue
// Deque Methods
deque.addFirst(10); // Adds element to front
deque.offerFirst(20); // Adds element to front
deque.removeLast(); // Removes element from back
deque.peekLast(); // Retrieves last element
deque.size(); // Returns size
deque.clear(); // Clears deque
PriorityQueue Declaration
Queue<Integer> pq = new PriorityQueue<>();
pq.add(10); // Add 10
pq.offer(20); // Add 20
System.out.println(pq.peek()); // 10 (head of the queue)
pq.poll(); // Removes 10
System.out.println(pq.isEmpty()); // false
System.out.println(pq.size()); // 1
pq.clear(); // Clear the queue
Set Declaration
HashSet<Integer> set = new HashSet<>();
Set<String> treeSet = new TreeSet<>(Comparator.reverseOrder());
Map Declaration
Map<String, Integer> map = new HashMap<>();
Map<Integer, String> map = new TreeMap<>(Comparator.reverseOrder());
boolean containsValue = map.containsValue(3);
boolean containsKey = map.containsKey("Harry"); // returns true if the key is in the map, false otherwise
// Iterate over the map using entrySet()
for (Map.Entry<String, Integer> entry : map.entrySet()) {
String key = entry.getKey();
Integer value = entry.getValue();
}
// Iterate over the map using iterator
Iterator<String> itr = map.keySet().iterator(); // Returns iterator to all the keys
while (itr.hasNext()) {
String key = itr.next();
Integer value = map.get(key);
}
String Parsing and Conversion in Java
Strings to Primitives using parse
parseInt()
and parseDouble()
Used for parsing a String into a primitive int or double.
int i = Integer.parseInt("12345");
int j = Integer.valueOf("1234").intValue(); // From String to Wrapper to Primitive
Creating Wrapper Instances using valueOf
valueOf()
Used to create instances of wrapper classes from a String or primitive.
Integer fromPrimitiveInt = Integer.valueOf(25); // From primitive
Integer fromString = Integer.valueOf("90"); // From String
String.valueOf()
Converts primitives and char arrays into Strings.
String intAsString = String.valueOf(42);
String doubleAsString = String.valueOf(3.14159);
String booleanAsString = String.valueOf(true);
String charArrayAsString = String.valueOf(new char[] {'H', 'e', 'l', 'l', 'o'});
Key Differences
Between parse
and valueOf
-
parse
: Converts a String to a primitive type. -
valueOf
: Converts a String or primitive type to a Wrapper object.
Read more about parse and valueOf
Between parse
and format
-
parse
: Converts a String to the data type of the class being parsed.LocalDate startLocalDate = LocalDate.parse("2023-10-30"); // yyyy-MM-dd format by default
-
format
: Converts an object to a formatted String.String formattedDate = startLocalDate.format(DateTimeFormatter.ofPattern("dd-MMM-YYYY"));
1D Array
-
a.length
is a field in array - Declare simple array
int[] a = new int[3]; // use [] for array instead of () int[] a = new int[] {1, 2, 3}; int[] b = {1, 2, 3}; // Same as above
- Declare an ArrayList using
Arrays.asList()
List<String> list = Arrays.asList("str1", "str2");
- Linearity vs circularity
arr[idx] = element; // Assign the element at the current index idx = idx + 1; // Increment the index linearly until idx reaches arr.length - 1 idx = (idx + 1) % arr.length; // Increment the index circularly. The modulo operator ensures that idx wraps around to 0 when it reaches arr.length
2D Array
- Declare and Iterate through the 2D Array
// Declaring a Rectangular Matrix String[][] arr = new String[6][7]; // 6 rows and 7 columns // Iterating through the 2D array and assigning values for (int i = 0; i < arr.length; i++) { // Loop through rows for (int j = 0; j < arr[i].length; j++) { // Loop through columns arr[i][j] = "-" + i + "_" + j; // Do something } }
- Using List of List
// Declaring a 2D Matrix List<List<Integer>> list = new ArrayList<>(); // Adding Elements into 2D ArrayList list.add(0, Arrays.asList(11, 12, 13)); list.add(1, Arrays.asList(21, 22, 23)); list.add(2, Arrays.asList(31, 32, 33)); // Printing the Matrix using FOR Loop for (int i = 0; i < list.size(); i = i + 1) { for (int j = 0; j < list.get(i).size(); j = i + 1) { System.out.print(list.get(i).get(j) + "\t"); } System.out.println(); }
The Arrays Class
Initializing Arrays
int size = 10; // any chosen size
// Primitive array: Initialized to False
boolean[] arr = new boolean[size];
// Wrapper class array: Initialized to False
Boolean[] array = new Boolean[size];
Arrays.fill(array, Boolean.FALSE);
// Primitive array: Initialized to 0
int[] intArr = new int[size];
// Wrapper class array: Initialized to 0
Integer[] wrapperIntArr = new Integer[size];
Arrays.fill(wrapperIntArr, Integer.valueOf(0));
Copying and Comparing Arrays
int[] original = {1, 2, 3, 4, 5};
// Copy array
int[] copy = Arrays.copyOf(original, original.length);
// Compare arrays
boolean areEqual = Arrays.equals(original, copy);
Sorting Arrays
String[] stringArr = new String[5];
Arrays.fill(stringArr, "Default Value"); // Initialize all elements
stringArr[2] = "Custom Value"; // Replacing specific elements
// Sorting the array
Arrays.sort(stringArr); // returns void, changes the original array
Maps
Contains Key or Value
boolean containsValue = map.containsValue(3);
boolean containsKey = map.containsKey("Harry"); // returns true if the key is in the map, false otherwise
getOrDefault
Map<String, Integer> map = new HashMap<>();
for (String str : list) { // Considering a list of Strings
// Use getOrDefault to fetch the current count (default to 0 if the key is not present)
int count = map.getOrDefault(str, 0);
map.put(str, count + 1); // Increment the count and update the map
}
Traditional Map Update
for (String str : namesList) {
if (treeMap.containsKey(str)) {
treeMap.put(str, map.get(str) + 1);
} else {
treeMap.put(str, 1);
}
}
Put Key-Value
Map<Integer, Integer> map = new HashMap<>();
map.putIfAbsent(key, value);
map.put(1, 100); // Inserts the key-value pair (1, 100)
map.put(1, 200); // Updates the value associated with key 1 to 200, returns 100
map.putIfAbsent(1, 100); // Inserts the key-value pair (1, 100)
map.putIfAbsent(1, 200); // Does nothing because key 1 already exists, returns 100
Remove from Map
// Removes the key/value pair for this key if present. Does nothing if the key is not present.
map.remove(key); // Concurrent Modification Exception in a Loop
itr.remove(); // Used to avoid concurrent modification exception using an Iterator
Map Iterator
Using map.keySet().iterator()
Iterator<String> itr = map.keySet().iterator(); // Returns iterator to all the keys
while (itr.hasNext()) {
String key = itr.next();
Integer value = map.get(key);
}
Using map.entrySet()
// Iterate over the map using entrySet()
for (Map.Entry<String, Integer> entry : map.entrySet()) {
String key = entry.getKey();
Integer value = entry.getValue();
}
Map forEach
treeMap.forEach((key, value) -> System.out.println(key + " -> " + value));
TreeMap with Comparator
TreeMap keeps the Default Natural Sorting Order with the Keys
Map<String, Integer> treeMap = new TreeMap<>(); // Default Natural Sorting Order
Map<String, Integer> treeMapReversed = new TreeMap<>(Comparator.reverseOrder());
Map<String, Integer> treeMapCustom = new TreeMap<>(Comparator.comparing(String::length)); // Custom key sorter
for (String name : namesList) { // From a list of Strings, put String as key
treeMap.put(name, name.length());
}
Character
Primitive to Wrapper
Character d = Character.valueOf('c'); // From primitive to Wrapper
Get ASCII Value of a Character
char myChar = 'a';
int asciiValue = myChar;
System.out.println("From type Casting " + asciiValue);
Get Int from Char (with numerical value) using -'0'
char charNum2 = '2';
int num2 = charNum2 - '0';
Character Checks
System.out.println(Character.isLetter('r')); // true 'r' is a letter
System.out.println(Character.isDigit('4')); // true
System.out.println(!Character.isLetterOrDigit('!')); // true : punctuation mark
System.out.println(Character.compare('1', '1')); // Compare character
Int Array to Keep Char ASCII as Index and Array Value as Count
int[] chars = new int[127]; // primitive int array initializes all the values with 0
char test = 'a';
chars[test]++;
chars['A']++;
System.out.println(Arrays.toString(chars)); // The value of Array at index = asciiVal of char is increased by 1
Get Numeric Value from Character
// Same can be achieved through the library method
// Returns unicode for characters from 10 to 35
System.out.println(Character.getNumericValue('A')); // DO NOT USE THIS
System.out.println(Character.getNumericValue(myChar));
System.out.println(Character.getNumericValue('1'));
/*
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ##1##, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,##1##, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
*/
String
Basic Methods
str1.equals(str2); // For Equality, DO NOT USE == (will compare objects)
str1.compareTo(str2);
// negative if str is "lexicographically" less than str2
// positive if str is "lexicographically" greater than str2
// ZERO if both strings are equal
Check if Blank
System.out.println(" ".isBlank()); // True -> Returns true if the string is empty or contains only white space
Split
// Cut the Strings from spaces into words
String[] words = strList.split(",");
Trim and Strip
String s = " Malgudi Days ";
System.out.println(s.trim()); // Trimmed blank spaces with all leading and trailing space removed
System.out.println(s.strip()); // Strip is Unicode Aware
System.out.println(s.stripLeading());
System.out.println(s.stripTrailing());
Contains
String sentence = "Hello, world!";
// Check if the string contains a specific substring
boolean containsHello = sentence.contains("Hello");
charAt and substring()
// returns a character at a given index i
str.charAt(i);
str.substring(i, j); // index j not included
str.substring(i); // from i till end
indexOf and lastIndexOf
// 2 if "er" begins from index 1, -1 if not Found
str.indexOf("er");
str.indexOf("er", 2); // start the search from index 2
str.lastIndexOf("ew"); // searches right to left
str.lastIndexOf("ew", 5); // right to left, from index 5
Case Change
str.toLowerCase();
str.toUpperCase();
Compare and Replace
System.out.println(str.replace("a", "$$"));
System.out.println(str.replace('e', '*')); // Character Replace
String str1 = str.replaceAll(" ", ""); // Replace All, takes RegEx
String to Char Array to String
String str = "Pneumonia";
char[] c = str.toLowerCase().toCharArray();
Arrays.sort(c); // Returns void
String revStr = new String(c);
Turn Anything into String
char c = 'C';
int d = 5;
Integer i = 5;
String newStr = String.valueOf(i);
char[] cArr = {'T', 'e', 's', 't'};
String newStrFromArray = String.valueOf(cArr);
Sorting
All sorts - Arrays.sort
, listObj.sort
, Collections.sort
- returns void
- changes the input array
Arrays Sort
int[] intArray = {4, 5, 3, 8, 2, 71};
Arrays.sort(intArray); // Default Natural Sorting Order
Arrays.sort(intArray, Comparator.reverseOrder()); // Reverse sorting
ListObject Sort
Comparator.nullsFirst()
or Comparator.nullsLast()
can be used to accommodate null values.
List<Integer> list = Arrays.asList(null, 4, 5, null, 3, 8, 2, 71, null);
list.sort(Comparator.nullsLast(Comparator.naturalOrder())); // Output: [2, 3, 4, 5, 8, 71, null, null, null]
list.sort(Comparator.nullsFirst(Comparator.reverseOrder())); // Output: [null, null, null, 71, 8, 5, 4, 3, 2]
List<String> stringList = Arrays.asList("apple", "banana", "orange");
stringList.sort(Comparator.comparing(String::length).reversed()); // Output: [banana, orange, apple] (since "banana" and "orange" have 6 characters, and "apple" has 5)
Collections Sort
List<Integer> integerListWithNull = Arrays.asList(5, 6, null, 71, 2, 3);
Collections.sort(integerListWithNull, Comparator.nullsLast(Comparator.naturalOrder())); // Output: [2, 3, 5, 6, 71, null]
Collections.sort(integerListWithoutNull, Collections.reverseOrder()); // Output: [71, 6, 5, 3, 2]
List<String> stringList = Arrays.asList("apple", "banana", "orange");
Collections.sort(stringList, Comparator.comparing(String::length)
.thenComparing(Comparator.reverseOrder()));
// Output: [banana, orange, apple]
// "banana" and "orange" have the same length (6), but "orange" is lexicographically after "banana".
Set
Creating Sets
List<String> namesList = Arrays.asList("Harry", "Hermione", "Ron", "Harry", "Ron", "Ron", "Remus");
// Sorted values returned while iterating in TreeSet
Set<String> treeSet = new TreeSet<>(Comparator.reverseOrder());
treeSet.addAll(namesList); // Output: [Ron, Remus, Hermione, Harry]
// Ordering NOT guaranteed in HashSet
Set<Integer> hashSet = new HashSet<>();
hashSet.addAll(namesList); // Output: (Unordered, but no duplicates, e.g., [Hermione, Remus, Harry, Ron])
Add Elements to a Set
// boolean add(E e);
/* Adds the element to the set and returns true if this set does not have this element.
if the element already exists, the call leaves the set unchanged and returns false */
set.add(value);
Find an Element in a Set
/* Returns true if the key is in the set, false otherwise. */
set.contains(key);
Remove from Set
boolean remove(Object o);
// Removes the specified element from this set if it is present. Returns true if this set contained the element
set.remove(key); // Concurrent Modification Exception in a Loop
itr.remove(); // Use of Iterator to avoid concurrent modification exception
Set Iteration
Iterator<String> itr = set.iterator();
while (itr.hasNext()) {
if (itr.next().length() % 2 == 0) {
itr.remove();
}
}
Heap
Declaring Min and Max Heaps
// Primitive Types
Queue<Integer> pq = new PriorityQueue<>(); // Default Natural Sorting Order
Queue<Integer> pq = new PriorityQueue<>(Comparator.naturalOrder()); // Min Heap
Queue<Integer> pq = new PriorityQueue<>(Comparator.reverseOrder()); // Max Heap
Heap Methods
// Heap methods
pq.offer(100);
pq.poll(); // Pops the root of the heap
Heap/Priority Queue of Type T
// For Type T
Queue<Employee> heapMax = new PriorityQueue<>(Comparator.comparing(Employee::getAge) // If the employee age is same
.thenComparing(Employee::getSalary)); // Natural Sort Order
Queue
Queue Methods
-
offer()
: Enqueue (add) elements to the queue -
peek()
: Retrieves, but does not remove, the head of this queue, or returns null if this queue is empty. -
poll()
: Retrieves and removes the head of this queue, or returns null if this queue is empty. -
remove()
: Removes a single instance of the specified element from this queue, if it is present. -
element()
: Retrieves, but does not remove, the head of this queue; differs frompeek()
-> throws an exception if queue is empty.
// Declare a queue using LinkedList
Queue<String> queue = new LinkedList<>();
// Enqueue (add) elements to the queue
queue.offer("Apple");
queue.offer("Banana");
queue.offer("Orange");
Stack
Stack Methods
-
push(E item)
: Pushes an item onto the top of the stack. -
pop()
: Removes the object at the top of the stack and returns that object. -
peek()
: Looks at the object at the top of the stack without removing it. -
empty()
: Checks if the stack is empty. -
search(Object o)
: Searches for the specified object in the stack and returns its position.
Stack<Integer> stack = new Stack<>();
stack.push(1);
stack.push(2);
stack.push(3);
System.out.println("Top element: " + stack.peek()); // Output: 3
while (!stack.empty()) {
System.out.println("Popped element: " + stack.pop());
}
// This does not work as stack.pop reduces the size of the stack each time
for (int i = 0; i < stack.size(); i++) {
System.out.println(stack.pop());
}
Math
Min and Max
int maxNumber = Math.max(10, 20);
float maxFloat = Math.max(15.5f, 12.7f);
int minNumber = Math.min(10, 20);
float minFloat = Math.min(15.5f, 12.7f);
Power and Square Root
double powerIntResult = Math.pow(2, 3);
double powerFloatResult = Math.pow(2.5, 2);
double sqrtResult = Math.sqrt(25);
Absolute Value
int absoluteIntValue = Math.abs(-5);
float absoluteFloatValue = Math.abs(-8.9f);
Ceil and Floor
double ceilIntResult = Math.ceil(5.3);
float ceilFloatResult = (float) Math.ceil(5.3f);
double floorIntResult = Math.floor(5.9);
float floorFloatResult = (float) Math.floor(5.9f);
Logarithm
double log10IntResult = Math.log10(1000);
double log10FloatResult = Math.log10(1000.0f);
double logResult = Math.log(Math.E); // Log base e of e is 1
Bitwise
Left Shift («)
Shifts the bits to the left by a specified number of positions (n) value « n.
- The vacant positions on the right are filled with zeros.
- It effectively multiplies the operand by
2^n
.
Signed Right Shift (»)
Shifts the bits of the operand to the right by a specified number of positions.
- It fills the vacant positions on the left with the sign bit (the leftmost bit) to preserve the sign of the number.
- If the number is positive, it fills with 0, and if negative, it fills with 1.
-
Divides the number by
2^n
.
Unsigned Right Shift (»>)
- It fills the vacant positions on the left with zeros, regardless of the sign bit.
- It is used for logical right shifts, and it treats the operand as an unsigned quantity.
- ALWAYS use this for the while loop, else infinite loop for negative numbers.
Bit Representation
short x = 0b11101011;
Integer.toBinaryString(235);
Negative Number Representation
int positiveNum = 0b00101100; // 44
int twoScomplement = 0b11010100;
Extracts the LSB of a Number
(number & 1);
Clear/Unset the Rightmost Set Bit
x & (x - 1);
Extracts the Rightmost Set Bit
x & ~(x - 1); // Isolates the rightmost 1-bit of y and sets all other bits to 0
Set the Nth Bit (Bitmask)
1 << n;
XOR #1 Cancels When Same
(x ^ x); // 0
(x ^ (~x)); // -1
XOR #2 Adding Without Carrying
// Example usage
Parity = 1 When #1’s Odd
x = (x & (x - 1));
parity = (parity ^ 1);